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INTRODUCTION

DURING severe nuclear reactor accidents similar to Three-
Mile Island, the fuel rods can fragment and thus convert the
reactor core into a large porous bed composed primarily of
UO, and ZrQ, particles [1]. As energy is released by fission
product decay, liquid coolant in the bed can boil away and
temperatures can eventually surpass the UO,~ZrO, melting
point (2800 K) [2]. Of interest to this study are heat transfer
and melt propagation in the bed after the particles become
dry (here, dry refers to the absence of liquid coolant).

Several researchers [3-8] have studied phase change
phenomena in porous media. Ogniewicz and Tien [3], Huang
[4] and others [S-7] investigated liquid/gas phase changes in
systems containing three phases (solid, liquid and gas). More
recently, Beckermann and Viskanta [8] studied solid/liquid
phase changes when only two phases are present. In the
present work solid/liquid phase changes are of interest and
three phases are present simultaneously. Only a limited
amount of qualitative information is available in this area
[9].

The work presented in this note is an extension of a recently
developed one-dimensional model of melt propagation in
porous media [2]. This note discusses a two-dimensional
model that considers the melting of a porous solid and the
subsequent refreezing of the melt in colder portions of the
bed as the liquid relocates under the action of gravity and
capillary forces. The effects of varying the particle diameter,
composition and bed height are also discussed.

ANALYSIS

Formulation
The following assumptions are employed.

(1) The average particle diameter, d,, is taken to be much
smaller than the distance characteristic of macroscopic
changes in temperature and species concentrations, Xx..
Therefore, the microscopic governing equations can be
volume averaged to yield macroscopic porous medium
equations.

(2) A modified version of Darcy’s law that accounts for
the presence of three phases can be used [10].

(3) Movement of the gas has a negligible effect on the
motion of the melt and heat transfer—gas velocities are
usually low, of the order of 1 cm s~' [2].

(4) Radiation heat transfer through the bed can
be modeled using a temperature-dependent thermal
conductivity.

(5) The solid and the liquid are in local thermal
equilibrium.

(6) On the particle scale, the species are well mixed and
the UO,—ZrO, phase diagram given by Hagrman [11] can be
. used. This implies that d, « [Dz.]"? where D is a diffusion

coefficient and 7, is the time scale of interest (e.g. the time
associated with the heat-up of the bed). Further, species
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diffusion is neglected over length scales comparable to the
characteristic distance x,—that is, [D1.]"? « x.. In summary,
d, « [D1]"* « x,,.

(7) Properties remain fixed at constant values.

In addition, it is assumed that the particles remain fixed in
space as they melt. This assumption is clearly not valid at
extremely high porosities. However, scoping experiments [9]
conducted in a research reactor indicate that the particles do
not start settling downward until the porosity surpasses a
value of about 0.7. As the solid melts, some fraction of the
liquid is trapped near the contact points between particles
by surface tension forces. These surface tension forces also
tend to hold the particles in place. When the particles eventu-
ally start moving, the analysis presented in this note breaks
down and consequently, results presented here are only valid
until the porosity reaches a value of 0.7.

Using these assumptions the model consists of the
following equations.

Conservation of mass

0 )
E [Y,,p,,sS] +V- [Yapzj“] == Er [Ysjps,l(l -&] ()

for each species j (j = 1 for UO, and j = 2 for ZrO,). The Y,
are related to each otherby Y, ,+ ¥,, = land ¥,,+ Y, = 1.

Conservation of momentum

Lu=—vP,—gp,. @

Ky
Equation (2) is similar to the traditional form of Darcy’s
law : the only difference is that the permeability x defined in
Bird et al. [12] is replaced by a relative permeability x, to
account for the presence of three phases (solid, liquid and
gas). Typically, x, depends on the particle diameter,"d,, the
porosity, ¢, the saturation, S, and a critical value of the
saturation, S,, that is often referred to as the residual satu-
ration [13]. The quantity S, is defined as the threshold value
of saturation below which bulk liquid motion ceases. For
S < S, k, =0 and equation (2) requires that u = 0. When
the saturation is less than the critical value, the liquid is
trapped between the particles by surface tension effects [13].
Liquid starts to flow when the saturation is increased to the
point that these pockets of trapped liquid touch and coalesce
[13].. At the other extreme, as the saturation approaches 1,
Kk, approaches k. That is, when S = 1, only two phases are
present (solid and liquid) and the relative permeability must
equal the permeability for the flow of a single fluid through
a porous matrix.

Capillary forces enter equation (2) through the term
involving the liquid pressure, P,. The capillary pressure is
defined as the difference between P, and the gas pressure, P,
(thatis, P, = P,— P,) [10, 13]. This difference arises because
of surface tension effects: that is, the capillary pressure is
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mags diffucivity 2 .—h
Mass aiiusivity l‘“ 5 )

gravitational acceleration [m s 3
enthalpy [J kg™']

heat of fusion [J kg~']
Leverett function

thermal conductivity [W m ™' K]
bed height [m]

capillary pressure [N m 7]
gas pressure [N m~2]
liquid pressure [N m 7]
decay heat [W kg~' of UQ,]

radial distance [m]

saturation (fraction of porosity ¢ occupied by
ﬂq'uiu J

effective saturation, (S—S§,)/(1—S,)

residual saturation (value of S below which
l|ﬂ'|lld mnhnn PPACPQ\

time {s]
temperature [K]
_superficial liquid velocity [m s™']

distance from the bottom of the bed [m]
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NOMENCLATURE
specific heat [J kg™ ' K] Y, (volume of liquid species j)/(volume of liquid)
particle diameter [mm] Y, (volume of solid species j)/(volume of solid).

Greek symbols

®, volume fraction of phase i

Ay thermal diffusivity [m? s~ ']

v surface tension [N m™')

B porosity (liquid and gas volume fraction,
o+ dg)

& emissivity

K permeability [m?]

K, relative permeability Im?)

u viscosity [Pa s)

p theoretical density [kg m ]

Subscripts

g gas

i phase

J species (j = [ for UO, and j = 2 for Zr0,)

£ liquid

s solid.

zero in systems of zero surface tension. In the applications
of interest, gas velocities are low, the gas pressure changes
by a small amount and the pressure gradient term in equation
(2) can be replaced using VP, = — VP, From equation (2) it
is therefore evident that capillary forces move liquid into
regions of high P_. Using dimensional analysis, Leverett [13]
concluded that the capillary pressure is given by

= Jy(s/h)” 2, where v is the surface tension and J is an
CIllplllbdlly UC:LUI IIllIlCU lullbllUll Ul Lllc CIICLUVC bdluldllUIl,
S. = (§—S,)/(1—S5,). As the particle diameter increases, x

increases [12] and P_ decreases—consequently, capillary for-
ces are small in beds with largP narticles. Decreasing ¢

are smal DEas nn ar paniCics. Lecreasing ¢

increases both &/x [12) and P, and consequently, capillary
forces tend to move liquid into regions of lower porosity. This
behavior is similar to the classical capillarity demonstration
discussed by Batchelor [14] in which liquid is observed to
rise in a small diameter tube when the tube is inserted into
an infinite liquid pool.

Conservation of energy
0 ) s e o _
52. (A —e) X,p5,h,+e5Y,, p, 0y ]+ V> L“Yf/p/ih//
J ;
=VekgVT+[(1—e)p, Yo +eSp 1 Y110 (3)

Closure

Correlations for k. x,. S,, J and k.4 are given in the
Appendix. In order to solve this set of equations, the decay
heat, properties, a phase diagram, enthalpies, as well as initial
and boundary conditions must be specified. Typically, the
decay heat, Q, is of the order of 300 W kg ™' of UO, and the
maximum value of the ZrO, volume fraction, Y,,, is 0.36 [2].
Typical UQ, and ZrO, properties are given in Table 1. The
viscosity, u, of the melt is 0.005 Pa s and the surface tension,
7,is 0.45 N m~' [11].

The UO,—ZrO, phase diagram given by Hagrman [11] is
used (UO,~ZrO, mixtures start melting at 2800 K over a
wide range of compositions) if we assume that the specific
heat of each species j is constant, then A, = ¢, (T~ T,) and
by =Co (T —Too)) + g,

Initiallv. uniform norosity and comnosition nrofiles a
Imtially, uniorm porosity and composiion prolucs are

prescribed and the temperature is set to 1500 K. The utside
boundaries continue to radiate to an environment at 1500 K

4]

as temperatures in the bed increase. On the centerline, the
radial component of the velocity is set equal to 0 and the
radial derivative of temperature (87/0r) is also set equal
to 0.

Solution algorithm

Equations (1) and (3) are solved using a computational
cell method [15] in which temperatures and species volume
fractions are determined at the centers of the cells and vel-
ocities are calculated at the sides. A time-explicit finite differ-
ence scheme is employed and the convective terms in
and (3) are

angé (3, arc

cantral
central

nsing

caleulated
using

eauations (1)
caicuialed

cquanens i)

differencing. Typically, 200 computational cells are needed
to resolve temperature and species gradients in the bed.

ORDER OF MAGNITUDE ANALYSIS

Consider a debris bed with an initial temperature, T,
where T is less than the melting temperature. If the bound-
aries radiate to cold environments as temperatures in the
bed increase, then boundary information becomes important
over the entire domain at time / = L%a,g, where a4 is an
average thermal diffusivity and L is the height of the bed (in
the problems of interest to this study, the radial extent of the

hed is of the same order as 7). Usine the nronerties in Table
OCQ 15 OF 1€ 5ame Oraer as L), Lsing ind propéruds in 1308

1. setting ¢ = 0.4, kg = 5 W m~' K 'and L =1 m gives:
ey = keg/[(1 —€)pyc,e] ~ 107°m* s and L¥/ay ~ 10°s. For
the times of interest, conduction is only important within
boundary layers of thickness & ~ [a.4#]"*. In the center of
the bed, temperatures increase approximately linearly with
time until the solid starts melting.

Table 1. Typical UO, and ZrO, properties [11}

Property uo, ZrO,
Solid density, p,; [kg m ™} 10000 5700
Liquid density, p,, [kg m~?] 9000 5700
Speciﬁc heat, ¢, [J kg“' K™'] 630 700
Thermai Conuuuuvuy, i (W m ' K] 3.0 2.0
Heat of fusion, A, [k kg™'] 274 706
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RESULTS AND DISCUSSION

Base case

Calculations are presented in this section for a 0.5 m high,
0.5 m diameter particle bed with a ZrO,: UO, mass ratio of
0.1, which corresponds to a ZrO, volume fraction of 0.15,
an initial porosity of 0.4 and an average particle diameter of
1 mm. The effects of varying the particle diameter, the bed
height and the composition are discussed in subsequent
sections.

Temperature contours at 3400 s are shown in Fig. 1. Note
that the 2800 K contour approximates the boundary of the
melt zone. Solid first melts at 3100 s, increasing the porosity
in the center of the bed and decreasing the local solid volume
fraction, «,. The melt subsequently relocates under the action
of both gravity and capillary forces. Capillary forces, which
tend to move liquid into regions of lower porosity, induce
liquid out of the melt zone in a roughly symmetric manner.
A downward velocity due to gravity is superimposed on this
capillary motion.

Solid volume fractions at 3800 s are shown in Fig. 2. Note
that as melt relocates it refreezes in colder regions near the
boundaries of the bed. Dense refrozen regions with o, > 0.6
form when the melt reaches the thermal boundary layer.
Most of the melt flows downward, creating the dark region
with a, > 0.8 in Fig. 2. However, a small fraction of the melt
flows upward and radially outward. After the formation of
the o, > 0.8 region in Fig. 2, the model predicts the creation
of a molten pool similar to the one found at Three-Mile
Island [1] as liquid accumulates above this blockage.

Sensitivity analysis

Particle diameter. Solutions were also obtained for a bed
with 5 mm diameter particles—all other parameters were
held fixed at their base case values. As evidenced by Fig. 3,
the melt zone is smaller and the refrozen regions form closer
to the center in a bed with larger particles. Raising 4,
enhances radiation heat transfer in the bed (the radiative
contribution to the effective conductivity is proportional to
d,), thus increasing the thermal boundary layer thickness, d.

It is also worth noting that the capillary pressure is in-
versely proportional to d, (P, ~ 1/x'? and x ~ d2). Thus,
capillary forces become less important, compared to gravity,
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Fi1G. 2. Solid volume fraction (&) profiles at 3800 s in a bed
with 1 mm diameter particles. The bed has an initial uniform
volume fraction of 0.6.

as the particle diameter is increased. Note that a refrozen
region with o, > 0.6 has not formed above the melt zone in
Fig. 3 (such a region is evident in Fig. 2).

Initial composition. Zirconia : urania mass ratios of 0.1, 0.2
and 0.3, corresponding to initial ZrO, volume fractions of
0.15,0.25 and 0.35, respectively, were considered. Decreasing
the UO, concentration reduces the decay heating and melt
formation is delayed by several hundred seconds as the
ZrO,: UO, mass ratio increases from 0.1 to 0.3. On the other
hand, flow characteristics remained relatively unaffected.
After initial melt formation, approximately 100 s elapsed
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FiG. 3. Solid volume fraction («,) profiles at 3800 s in a bed

Fi6. 1. Temperature contours at 3400 s in a bed with I mm  wjth 5'mm diameter particles. The bed has an initial uniform

diameter particles.

volume fraction of 0.6.
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before macroscopic liquid motion was evident and a refrozen
region started forming 300 s later in all three cases.

Bed height. Three bed heights were considered : 0.50, 0.75
and 1.00 m. As one would expect, the timing of initial melt
formation was independent of the bed height, L. Further-
more, the refrozen regions formed at the same locations
(relative to the boundaries of the bed) in each calculation
because the thermal boundary layer thickness is also inde-
pendent of L. Consequently, the size of the melt zone
increased approximately linearly with L.

CONCLUSIONS

Key results are that (1) when solid starts melting, the liquid
relocates under the action of gravity and capillary forces,
refreezing upon reaching colder regions near the boundaries
of the bed ; (2) a flow blockage forms near the bottom of the
bed and the location of this blockage is determined primarily
by the bottom thermal boundary layer thickness ; (3) increas-
ing the particle diameter increases the radiative contribution
to the effective conductivity, raising the thermal boundary
layer thickness and consequently, reducing the size of the
melt zone ; (4) decreasing the UO, concentration reduces the
amount of energy released by fission product decay and
delays melting by several hundred seconds; and (5) the size
of the melt zone increases linearly with the height of the bed.
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APPENDIX. PHYSICAL CHARACTERISTICS
Bird et al. [12] derived the following equation for the
permeability :
d: 3
PR La—
150(1 —¢)*

The relative permeability. x,, is given by [2]: k, = xS} for
S > S, and x, = 0 for S < S.. The residual saturation, S,, is

given by [2]:
1 N v 2e3
S = 86.3 |:1cp, g:|

The following relation gives the Leverett function. J [2}:
J=a(S.+B)"°, where a = 0.38, b = 0.0l4 and ¢ = 0.27.

The following correlation gives k¢ [2] :
1y

o -k U A

K = VK 1 SRR =)

where k, is the average thermal conductivity of the solid and

the liquid, w = 0.3¢" °(k,/k}) =%\ = (¢ —w)/(1 —w) and

¢ (= £—eS) is the volume fraction occupied by gas. Radi-

ation heat transfer in the bed is incorporated using a modified
gas conductivity, k¥ = k,+k,,q. where k., = 4¢.6d,T".
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