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INTRODUCTION 

DURING severe nuclear reactor accidents similar to Three- 
Mile Island, the fuel rods can fragment and thus convert the 
reactor core into a large porous bed composed primarily of 
UOz and ZrO, particles [ 11. As energy is released by fission 
product decay, liquid coolant in the bed can boil away and 
temperatures can eventually surpass the UO,-ZrO, melting 
point (2800 K) [2]. Of interest to this study are heat transfer 
and melt propagation in the bed after the particles become 
dry (here, dry refers to the absence of liquid coolant). 

Several researchers [3-81 have studied phase change 
phenomena in porous media. Ogniewicz and Tien [3], Huang 
[4] and others [5-7] investigated liquid/gas phase changes in 
systems containing three phases (solid, liquid and gas). More 
recently, Beckermann and Viskanta [8] studied solid/liquid 
phase changes when only two phases are present. In the 
present work solid/liquid phase changes are of interest and 
three phases are present simultaneously. Only a limited 
amount of qualitative information is available in this area 
[91. 

The work presented in this note is an extension of a recently 
developed one-dimensional model of melt propagation in 
porous media [2]. This note discusses a two-dimensional 
model that considers the melting of a porous solid and the 
subsequent refreezing of the melt in colder portions of the 
bed as the liquid relocates under the action of gravity and 
capillary forces. The effects of varying the particle diameter, 
composition and bed height are also discussed. 

ANALYSIS 

Formulation 
The following assumptions are employed. 

(1) The average particle diameter, d,, is taken to be much 
smaller than the distance characteristic of macroscopic 
changes in temperature and species concentrations, x,. 
Therefore, the microscopic governing equations can be 
volume averaged to yield macroscopic porous medium 
equations. 

(2) A modified version of Darcy’s law that accounts for 
the presence of three phases can be used [lo]. 

(3) Movement of the gas has a negligible effect on the 
motion of the melt and heat transfer-gas velocities are 
usually low, of the order of I cm s-’ [2]. 

(4) Radiation heat transfer through the bed can 
be modeled using a temperature-dependent thermal 
conductivity. 

(5) The solid and the liquid are in local thermal 
equilibrium. 

(6) On the particle scale, the species are well mixed and 
the UO,-ZrO, phase diagram given by Hagrman [ 1 l] can be 
used. This implies that 4 << [Dr J ‘I’, where D is a diffusion 
coefficient and rc is the time scale of interest (e.g. the time 
associated with the heat-up of the bed). Further, species 

diffusion is neglected over length scales comparable to the 
characteristic distance x,-that is, [DrJ ‘/* << x,. In summary, 
d,, << [DzJ “’ <c x,. 

(7) Properties remain tixed at constant values. 

In addition, it is assumed that the particles remain fixed in 
space as they melt. This assumption is clearly not valid at 
extremely high porosities. However, scoping experiments [9] 
conducted in a research reactor indicate that the particles do 
not start settling downward until the porosity surpasses a 
value of about 0.7. As the solid melts, some fraction of the 
liquid is trapped near the contact points between particles 
by surface tension forces. These surface tension forces also 
tend to hold the particles in place. When the particles eventu- 
ally start moving, the analysis presented in this note breaks 
down and consequently, results presented here are only valid 
until the porosity reaches a value of 0.7. 

Using these assumptions the model consists of the 
following equations. 

Conservation of mass 

~Iy~~~~jEsl+v~~y~~~~jul = -~[KjP9,(l-E)I (l) 
for each speciesj (j = 1 for UO, and j = 2 for ZrO,). The Y,, 
are related to each other by Y,, + Yd2 = 1 and Y,, + Yti = 1. 

Conservation of momentum 

‘u = _VP[--gp,. 
K1 

Equation (2) is similar to the traditional form of Darcy’s 
law : the only difference is that the permeability K defined in 
Bird et al. [12] is replaced by a relative permeability rcC to 
account for the presence of three phases (solid, liquid and 
gas). Typically, K( depends on the particle diameter,‘& the 
porosity, E, the saturation, S, and a critical value of the 
saturation, S,, that is often referred to as the residual satu- 
ration [13]. The quantity S, is defined as the threshold value 
of saturation below which bulk liquid motion ceases. For 
S Q S,, ti, = 0 and equation (2) requires that II = 0. When 
the saturation is less than the critical value, the liquid is 
trapped between the particles by surface tension effects [ 131. 
Liquid starts to flow when the saturation is increased to the 
point that these pockets of trapped liquid touch and coalesce 
[13]..At the other extreme, as the saturation approaches 1, 
K, approaches K. That is, when S = 1, only two phases are 
present (solid and liquid) and the relative permeability must 
equal the permeability for the flow of a single fluid through 
a porous matrix. 

Capillary forces enter equation (2) through the term 
involving the liquid pressure, Pd. The capillary pressure is 
defined as the difference between PC and the gas pressure, P8 
(that is, P, = P,-P,) [IO, 131. This difference arises because 
of surface tension effects: that is, the capillary pressure is 

“MT 32:7-r., 1373 



1374 Technical Notes 

e/J 
4 
D 
9 
h 

hr 
J 
k 
L 

T 
u 
x 

NOMENCLATURE 

specific heat (J kgg’ K’] Y,, 
particle diameter [mm] 

(volume of liquid speciesj)/(volume of liquid) 

mass diffusivity [m’ ss’] 
Y\, (volume of solid species j)/(volume of solid). 

gravitational acceleration [m s-*1 
enthalpy [J kg-‘] Greek symbols 

heat of fusion [J kg-‘] % volume fraction of phase i 
Leverett function %ti thermal diffusivity [m’ ss’] 

thermal conductivity [W m-’ KS-‘] : surface tension [N m-‘1 

bed height [m] e porosity (liquid and gas volume fraction, 

capillary pressure [N mm?] Tl + ap) 

gas pressure [N mm*] I:, emissivity 

liquid pressure [N m -‘] X permeability [mz] 

decay heat [w kg-’ of UO:] x/ relative permeability [mL] 

radial distance [m] k viscosity [Pa s] 

saturation (fraction of porosity e occupied by /, theoretical density [kg rn- ‘1 

liquid) 
effective saturation, (S- S,)/( 1 -S,) Subscripts 
residual saturation (value of S below which g gas 
liquid motion ceases) i phase 
time [s] j species (j = I for UOz and j = 2 for ZrOz) 
temperature [K] f liquid 
superficial liquid velocity [m s-‘1 s solid. 
distance from the bottom of the bed [m] 

zero in systems of zero surface tension. In the applications 
of interest, gas velocities are low, the gas pressure changes 
by a small amount and the pressure gradient term in equation 
(2) can be replaced using VP, = -VP,. From equation (2) it 
is therefore evident that capillary forces move liquid into 
regions of high P,. Using dimensional analysis, Leverett [I 31 
concluded that the capillary pressure is given by 
P, = Jy(&) I’*, where y is the surface tension and J is an 
empirically determined function of the effective saturation, 
S, = (S-S,)/(l -S,). As the particle diameter increases, K 
increases [12] and P, decreases+onsequently, capillary for- 
ces are small in beds with large particles. Decreasing E 
increases both E/K ]12] and P, and consequently, capillary 
forces tend to move liquid into regions oflower porosity. This 
behavior is similar to the classical capillarity demonstration 
discussed by Batchelor [14] in which liquid is observed to 
rise in a small diameter tube when the tube is inserted into 
an infinite liquid pool 

Conservation qf energy 

~~[(l-E)Y,p,h,,+ESY,,p,,h,,l+V.~uY,,,p,,k,, 
I i 

Closure 

= v*k,,VT+[(1 -&)A, Y,,+G+, Y/ ,lQ. (3) 

Correlations for K. K,, S,, J and keff are given in the 
Appendix. In order to solve this set of equations, the decay 
heat, properties, a phase diagram, enthalpies, as well as initial 
and boundary conditions must be specified. Typically, the 
decay heat, Q, is of the order of 300 W kg-’ of UO, and the 
maximum value of the ZrO, volume fraction, Y,?, is 0.36 [2]. 
Typical UOz and ZrOl properties are given in Table 1. The 
viscosity, p, of the melt is 0.005 Pa s and the surface tension, 
y, is 0.45 N m-’ [ll]. 

The UO,-ZrO, phase diagram given by Hagrman [l I] is 
used (UO,-ZrO, mixtures start melting at 2800 K over a 
wide range of compositions). If we assume that the specific 
heat of each species j is constant, then h, = c,,,(T- Trer) and 

h,, = c,,(T- T,r) + h,,. 
Initially, uniform porosity and composition profiles are 

prescribed and the temperature is set to 1500 K. The outside 
boundaries continue to radiate to an environment at 1500 K 

as temperatures in the bed increase. On the centerline, the 
radial component of the velocity is set equal to 0 and the 
radial derivative of temperature (l+T/dr) is also set equal 
to 0. 

Solution algorithm 
Equations (1) and (3) are solved using a computational 

cell method [15] in which temperatures and species volume 
fractions are determined at the centers of the cells and vel- 
ocities are calculated at the sides. A time-explicit finite differ- 
ence scheme is employed and the convective terms in 
equations (1) and (3) are calculated using central 
differencing. Typically, 200 computational cells are needed 
to resolve temperature and species gradients in the bed. 

ORDER OF MAGNITUDE ANALYSIS 

Consider a debris bed with an initial temperature, r,, 
where TO is less than the melting temperature. If the bound- 
aries radiate to cold environments as temperatures in the 
bed increase, then boundary information becomes important 
over the entire domain at time t = L’/K,, where acN is an 
average thermal diffusivity and L is the height of the bed (in 
the problems of interest to this study, the radial extent of the 
bed is of the same order as L). Using the properties in Table 
I.setting~=0.4,k,~=5Wm-‘Km’andL=lmgives: 
ae,r N k,,/[( I --~)p,c~,] N 10eh rn’ ss’ and L’/c(,~ Y lo6 s. For 
the times of interest, conduction is only important within 
boundary layers of thickness 6 r [a,Rt]“‘. In the center of 
the bed, temperatures increase approximately linearly with 
time until the solid starts melting. 

Table 1. Typical UOz and ZrO, properties [l l] 

Property UO? ZrOz 

Solid density, [kg mm’] psi 10000 5700 
Liqmd density, Pi, [kg m-‘1 9000 5700 
Specific heat, c,,, [J kg-’ K-‘1 630 700 
Thermal conductivity, k, w m-’ K -I] 3.0 2.0 
Heat of fusion, h, [kJ kgg’] 274 706 
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RESULTS AND DISCUSSION 

Base case 
Calculations are presented in this section for a 0.5 m high, 

0.5 m diameter particle bed with a ZrO, : UOz mass ratio of 
0.1, which corresponds to a ZrOz volume fraction of 0.15, 
an initial porosity of 0.4 and an average particle diameter of 
1 mm. The effects of varying the particle diameter, the bed 
height and the composition are discussed in subsequent 
sections. 

Temperature contours at 3400 s are shown in Fig. 1. Note 
that the 2800 K contour approximates the boundary of the 
melt zone. Solid first melts at 3100 s, increasing the porosity 
in the center of the bed and decreasing the local solid volume 
fraction, a,. The melt subsequently relocates under the action 
of both gravity and capillary forces. Capillary forces, which 
tend to move liquid into regions of lower porosity, induce 
liquid out of the melt zone in a roughly symmetric manner. 
A downward velocity due to gravity is superimposed on this 
capillary motion. 

Solid volume fractions at 3800 s are shown in Fig. 2. Note 
that as melt relocates it refreezes in colder regions near the 
boundaries of the bed. Dense refrozen regions with a, > 0.6 
form when the melt reaches the thermal boundary layer. 
Most of the melt flows downward, creating the dark region 
with CL, > 0.8 in Fig. 2. However, a small fraction of the melt 
flows upward and radially outward. After the formation of 
the a, > 0.8 region in Fig. 2, the model predicts the creation 
of a molten pool. similar to the one found at Three-Mile 
Island [l] as liquid accumulates above this blockage. 

Sensitivity analysis 
Particle diameter. Solutions were also obtained for a bed 

with 5 mm diameter particles-all other parameters were 
held fixed at their base case values. As evidenced by Fig. 3, 
the melt zone is smaller and the refrozen regions form closer 
to the center in a bed with larger particles. Raising 4 
enhances radiation heat transfer in the bed (the radiative 
contribution to the effective conductivity is proportional to 
d,), thus increasing the thermal boundary layer thickness, S. 

It is also worth noting that the capillary pressure is in- 
versely proportional to d, (PC - l/~“’ and K - di). Thus, 
capillary forces become less important, compared to gravity, 
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FIG. I. Temperature contours at 3400 s in a bed with 1 mm 
diameter particles. 

radial distance, r (cm) 

FIG. 2. Solid volume fraction (as) profiles at 3800 s in a bed 
with 1 mm diameter particles. The bed has an initial uniform 

volume fraction of 0.6. 

as the particle diameter is increased. Note that a refrozen 
region with G(, > 0.6 has not formed above the melt zone in 
Fig. 3 (such a region is evident in Fig. 2). 

Initial composition. Zirconia : urania mass ratios of 0.1,0.2 
and 0.3, corresponding to initial ZrO, volume fractions of 
0.150.25 and 0.35, respectively, were considered. Decreasing 
the U02 concentration reduces the decay heating and melt 
formation is delayed by several hundred seconds as the 
ZrO, : UOz mass ratio increases from 0.1 to 0.3. On the other 
hand, flow characteristics remained relatively unaffected. 
After initial melt formation, approximately 100 s elapsed 

50 

radial distance, r (cm) 

FIG. 3~ Solid volume fraction (a,) protiles at 3800 s in a bed 
with 5 mm diameter particles. The bed has an initial uniform 

volume fraction of 0.6. 
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before macroscopic liquid motion was evident and a refrozen 
region started forming 300 s later in all three cases. 

Bed height. Three bed heights were considered : 0.50, 0.75 
and 1.00 m. As one would expect, the timing of initial melt 
formation was independent of the bed height, L. Further- 
more, the refrozen regions formed at the same locations 
(relative to the boundaries of the bed) in each calculation 
because the thermal boundary layer thickness is also inde- 
pendent of L. Consequently, the size of the melt zone 
increased approximately linearly with L. 

CONCLUSIONS 

Key results are that (1) when solid starts melting, the liquid 
relocates under the action of gravity and capillary forces, 
refreezing upon reaching colder regions near the boundaries 
of the bed ; (2) a flow blockage forms near the bottom of the 
bed and the location of this blockage is determined primarily 
by the bottom thermal boundary layer thickness ; (3) increas- 
ing the particle diameter increases the radiative contribution 
to the effective conductivity, raising the thermal boundary 
layer thickness and consequently, reducing the size of the 
melt zone ; (4) decreasing the UOr concentration reduces the 
amount of energy released by fission product decay and 
delays melting by several hundred seconds ; and (5) the size 
of the melt zone increases linearly with the height of the bed. 
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APPENDIX. PHYSICAL CHARACTERISTICS 

Bird et al. [ 121 derived the following equation for the 
permeability : 

dF ti _ 
150(1--E)’ 

The relative permeability. K(, is given by [2] : tiI = tiS2 for 
S > S, and K, = 0 for S < S,. The residual saturation, S,, is 
given by [2] : 

, r ., 111~63 
&=_L L 

86.3 kp,g 1 J 

The following relation gives the Leverett function. J [2] : 
J= a(S,+B)-‘, where a = 0.38. b = 0.014 and c = 0.27. 

The following correlation gives k,, [2] : 

1-i k,, = ,)k: + ~-.__. ..- -__k& 

k,w+k:(l -iv) 
tA3) 

where k, is the average thermal conductivity of the solid and 
the liquid, w = 0.34’ 6(k,/k:)-“.“44, $ = (4 - w)/(l -iv) and 
4 (Z E- ES) is the volume fraction occupied by gas. Radi- 
ation heat transfer in the bed is incorporated using a modified 
gas conductivity, k: = k, + krad. where kisd = 4e,ud,T’. 


